Tekananyang diterapkan pada permukaan internal dan eksternal wadah harus antara 10-10000psi, mungkin naik hingga 70000 psi yang merupakan batas maksimum. bejana tekan dapat ditembakkan atau tidak ditembakkan. Tekanan yang diberikan dapat berasal dari sumber eksternal atau penerapan perpindahan panas. 1 dua bejana yang berhubungan terbuat dari bahan yang kuat misalnya besi 2) penghisap kecil dan penghisap besar 3) minyak pengisi bejana Adapun cara kerja dongkrak hidrolik tersebut adalah sebagai RumusHukum Pascal. Berdasarkan bunyi hukum di atas, kita dapat menurunkan rumus Hukum Pascal. Kita akan gunakan kembali gambar di atas untuk membantu analisis: Jika tekanan eksternal yang diberikan kepada fluida kita sebut sebagai p 1 dan tekanan yang diteruskan fluida kita sebut p 2, maka menurut Hukum Pascal: Oleh karena p = F / A, di mana 1 persoalannya dibagi atas beberapa tahap,yang setiap tahapnya diambil satu keputusan. 2. Masing-masing tahap terdiri dari sejumlah status yang saling berhubungan. 3. Hasil keputusan akan di transformasikan. 4. Ongkos tergantung dari ongkos tahapan yang telah berjalan dan ongkos pada tahap itu sendiri. 5. Duabuah muatan A dan B terpisah dengan jarak 0,9 m. Jika titk C adalah titk yang terletak di antara A dan B sedemikian sehingga medan listrik di C sama dengan nol, maka letak C dari A adalah . A. 10 cm B. 15 cm C. 20 cm D. 25 cm E. 30 cm 34. Dua muatan listrik masing-masing + 2 q dan - q satu sama lain berjarak 5 m. Potensial listrik pada analisis unsur intrinsik novel ronggeng dukuh paruk. Secara fisiologi, jantung adalah salah satu organ tubuh yang paling vital fungsinya dibandingkan dengan organ tubuh vital lainnya. Dengan kata lain, apabila fungsi jantung mengalami gangguan maka besar pengaruhnya terhadap organ-organ tubuh lainya terutama ginjal dan otak. Karena fungsi utama jantung adalah sebagai single pompa yang memompakan darah ke seluruh tubuh untuk kepentingan metabolisme sel-sel demi kelangsungan hidup. Untuk itu, siapapun orangnya sebelum belajar EKG harus menguasai anatomi & fisiologi dengan baik dan benar. Dalam topik anatomi & fisiologi jantung ini, saya akan menguraikan dengan beberapa sub-topik di bawah ini Ukuran,Posisi atau letak Jantung Lapisan Pembungkus Jantung Lapisan Otot Jantung Katup Jantung Ruang Jantung Arteri Koroner Siklus Jantung Ukuran,Posisi atau letak Jantung Anda tahu berapa ukuran jantung anda? Secara anatomi ukuran jantung sangatlah variatif. Dari beberapa referensi yang saya baca, ukuran jantung manusia mendekati ukuran kepalan tangannya atau dengan ukuran panjang kira-kira 5″ 12cm dan lebar sekitar 3,5″ 9cm. Jantung terletak di belakang tulang sternum, tepatnya di ruang mediastinum diantara kedua paru-paru dan bersentuhan dengan diafragma. Bagian atas jantung terletak dibagian bawah sternal notch, 1/3 dari jantung berada disebelah kanan dari midline sternum , 2/3 nya disebelah kiri dari midline sternum. Sedangkan bagian apek jantung di interkostal ke-5 atau tepatnya di bawah puting susu sebelah kiri.lihat gb1 & 2 Gb 1 Gb 2 Lapisan Pembungkus Jantung Bagi rekan-rekan kita yang bekerja di ruang kamar operasi bedah jantung atau thorak saya yakin sudah terbiasa melihat keberadaan jantung di mediastinum, begitu pula dengan lapisan pembungkus atau pelindung jantungnya. Jantung di bungkus oleh sebuah lapisan yang disebut lapisan perikardium, di mana lapisan perikardium ini di bagi menjadi 3 lapisan lihat yaitu Lapisan fibrosa, yaitu lapisan paling luar pembungkus jantung yang melindungi jantung ketika jantung mengalami overdistention. Lapisan fibrosa bersifat sangat keras dan bersentuhan langsung dengan bagian dinding dalam sternum rongga thorax, disamping itu lapisan fibrosa ini termasuk penghubung antara jaringan, khususnya pembuluh darah besar yang menghubungkan dengan lapisan ini exp vena cava, aorta, pulmonal arteri dan vena pulmonal. Lapisan parietal, yaitu bagian dalam dari dinding lapisan fibrosa Lapisan Visceral, lapisan perikardium yang bersentuhan dengan lapisan luar dari otot jantung atau epikardium. Diantara lapisan pericardium parietal dan lapisan perikardium visceral terdapat ruang atau space yang berisi pelumas atau cairan serosa atau yang disebut dengan cairan perikardium. Cairan perikardium berfungsi untuk melindungi dari gesekan-gesekan yang berlebihan saat jantung berdenyut atau berkontraksi. Banyaknya cairan perikardium ini antara 15 – 50 ml, dan tidak boleh kurang atau lebih karena akan mempengaruhi fungsi kerja jantung. Gb 3 Lapisan Otot Jantung Seperti yang terlihat pada lapisan otot jantung terbagi menjadi 3 yaitu Epikardium,yaitu bagian luar otot jantung atau pericardium visceral Miokardium, yaitu jaringan utama otot jantung yang bertanggung jawab atas kemampuan kontraksi jantung. Endokardium, yaitu lapisan tipis bagian dalam otot jantung atau lapisan tipis endotel sel yang berhubungan langsung dengan darah dan bersifat sangat licin untuk aliran darah, seperti halnya pada sel-sel endotel pada pembuluh darah lainnya. Lihat atau Gb 4 Katup Jantung Katup jatung terbagi menjadi 2 bagian, yaitu katup yang menghubungkan antara atrium dengan ventrikel dinamakan katup atrioventrikuler, sedangkan katup yang menghubungkan sirkulasi sistemik dan sirkulasi pulmonal dinamakan katup semilunar. Katup atrioventrikuler terdiri dari katup trikuspid yaitu katup yang menghubungkan antara atrium kanan dengan ventrikel kanan, katup atrioventrikuler yang lain adalah katup yang menghubungkan antara atrium kiri dengan ventrikel kiri yang dinamakan dengan katup mitral atau bicuspid. Katup semilunar terdiri dari katup pulmonal yaitu katup yang menghubungkan antara ventrikel kanan dengan pulmonal trunk, katup semilunar yang lain adalah katup yang menghubungkan antara ventrikel kiri dengan asendence aorta yaitu katup aorta. Lihat Gb 5 Katup berfungsi mencegah aliran darah balik ke ruang jantung sebelumnya sesaat setelah kontraksi atau sistolik dan sesaat saat relaksasi atau diastolik. Tiap bagian daun katup jantung diikat oleh chordae tendinea sehingga pada saat kontraksi daun katup tidak terdorong masuk keruang sebelumnya yang bertekanan rendah. Chordae tendinea sendiri berikatan dengan otot yang disebut muskulus papilaris. Lihat Gb6 Gb 5 Gb 6 Seperti yang terlihat pada diatas, katup trikuspid 3 daun katup tri =3, katup aortadan katup pulmonal juga mempunya 3 daun katup. Sedangkan katup mitral atau biskupid hanya mempunyai 2 daun katup. Ruang,Dinding & Pembuluh Darah Besar Jantung Jantung kita dibagi menjadi 2 bagian ruang, yaitu Atrium serambi Ventrikel bilik Karena atrium hanya memompakan darah dengan jarak yang pendek, yaitu ke ventrikel. Oleh karena itu otot atrium lebih tipis dibandingkan dengan otot ventrikel. Ruang atrium dibagi menjadi 2, yaitu atrium kanan dan atrium kiri. Demikian halnya dengan ruang ventrikel, dibagi lagi menjadi 2 yaitu ventrikel kanan dan ventrikel kiri. Jadi kita boleh mengatakan kalau jantung dibagi menjadi 2 bagian yaitu jantung bagian kanan atrium kanan & ventrikel kanan dan jantung bagian kiri atrium kiri & ventrikel kiri. Kedua atrium memiliki bagian luar organ masing-masing yaitu auricle. Dimana kedua atrium dihubungkan dengan satu auricle yang berfungsi menampung darah apabila kedua atrium memiliki kelebihan volume. Kedua atrium bagian dalam dibatasi oleh septal atrium. Ada bagian septal atrium yang mengalami depresi atau yang dinamakan fossa ovalis, yaitu bagian septal atrium yang mengalami depresi disebabkan karena penutupan foramen ovale saat kita lahir. Ada beberapa ostium atau muara pembuluh darah besar yang perlu anda ketahui yang terdapat di kedua atrium, yaitu Ostium Superior vena cava, yaitu muara atau lubang yang terdapat diruang atrium kanan yang menghubungkan vena cava superior dengan atrium kanan. Ostium Inferior vena cava, yaitu muara atau lubang yang terdapat di atrium kanan yang menghubungkan vena cava inferior dengan atrium kanan. Ostium coronary atau sinus coronarius, yaitu muara atau lubang yang terdapat di atrium kanan yang menghubungkan sistem vena jantung dengan atrium kanan. Ostium vena pulmonalis, yaitu muara atau lubang yang terdapat di atrium kiri yang menghubungkan antara vena pulmonalis dengan atrium kiri yang mempunyai 4 muara. Bagian dalam kedua ruang ventrikel dibatasi oleh septal ventrikel, baik ventrikel maupun atrium dibentuk oleh kumpulan otot jantung yang mana bagian lapisan dalam dari masing-masing ruangan dilapisi oleh sel endotelium yang kontak langsung dengan darah. Bagian otot jantung di bagian dalam ventrikel yang berupa tonjolan-tonjolan yang tidak beraturan dinamakan trabecula. Kedua otot atrium dan ventrikel dihubungkan dengan jaringan penghubung yang juga membentuk katup jatung dinamakan sulcus coronary, dan 2 sulcus yang lain adalah anterior dan posterior interventrikuler yang keduanya menghubungkan dan memisahkan antara kiri dan kanan kedua ventrikel. Perlu anda ketahui bahwa tekanan jantung sebelah kiri lebih besar dibandingkan dengan tekanan jantung sebelah kanan, karena jantung kiri menghadapi aliran darah sistemik atau sirkulasi sistemik yang terdiri dari beberapa organ tubuh sehingga dibutuhkan tekanan yang besar dibandingkan dengan jantung kanan yang hanya bertanggung jawab pada organ paru-paru saja, sehingga otot jantung sebelah kiri khususnya otot ventrikel sebelah kiri lebih tebal dibandingkan otot ventrikel kanan. Pembuluh Darah Besar Jantung Ada beberapa pembuluh besar yang perlu anda ketahui, yaitu Vena cava superior, yaitu vena besar yang membawa darah kotor dari bagian atas diafragma menuju atrium kanan. Vena cava inferior, yaitu vena besar yang membawa darah kotor dari bagian bawah diafragma ke atrium kanan. Sinus Coronary, yaitu vena besar di jantung yang membawa darah kotor dari jantung sendiri. Pulmonary Trunk,yaitu pembuluh darah besar yang membawa darah kotor dari ventrikel kanan ke arteri pulmonalis Arteri Pulmonalis, dibagi menjadi 2 yaitu kanan dan kiri yang membawa darah kotor dari pulmonary trunk ke kedua paru-paru. Vena pulmonalis, dibagi menjadi 2 yaitu kanan dan kiri yang membawa darah bersih dari kedua paru-paru ke atrium kiri. Assending Aorta, yaitu pembuluh darah besar yang membawa darah bersih dari ventrikel kiri ke arkus aorta ke cabangnya yang bertanggung jawab dengan organ tubuh bagian atas. Desending Aorta,yaitu bagian aorta yang membawa darah bersih dan bertanggung jawab dengan organ tubuh bagian bawah. lihat Gb7 Gb 7 Arteri Koroner Arteri koroner adalah arteri yang bertanggung jawab dengan jantung sendiri,karena darah bersih yang kaya akan oksigen dan elektrolit sangat penting sekali agar jantung bisa bekerja sebagaimana fungsinya. Apabila arteri koroner mengalami pengurangan suplainya ke jantung atau yang di sebut dengan ischemia, ini akan menyebabkan terganggunya fungsi jantung sebagaimana mestinya. Apalagi arteri koroner mengalami sumbatan total atau yang disebut dengan serangan jantung mendadak atau miokardiac infarction dan bisa menyebabkan kematian. Begitupun apabila otot jantung dibiarkan dalam keadaan iskemia, ini juga akan berujung dengan serangan jantung juga atau miokardiac infarction. Arteri koroner adalah cabang pertama dari sirkulasi sistemik, dimana muara arteri koroner berada dekat dengan katup aorta atau tepatnya di sinus valsava Arteri koroner dibagi dua,yaitu Arteri koroner kanan Arteri koroner kiri Arteri Koroner Kiri Arteri koroner kiri mempunyai 2 cabang yaitu LAD Left Anterior Desendendan arteri sirkumflek. Kedua arteri ini melingkari jantung dalam dua lekuk anatomis eksterna, yaitu sulcus coronary atau sulcus atrioventrikuler yang melingkari jantung diantara atrium dan ventrikel, yang kedua yaitu sulcus interventrikuler yang memisahkan kedua ventrikel. Pertemuan kedua lekuk ini dibagian permukaan posterior jantung yang merupakan bagian dari jantung yang sangat penting yaitu kruks jantung. Nodus AV node berada pada titik ini. LAD arteri bertanggung jawab untuk mensuplai darah untuk otot ventrikel kiri dan kanan, serta bagian interventrikuler septum. Sirkumflex arteri bertanggung jawab untuk mensuplai 45% darah untuk atrium kiri dan ventrikel kiri, 10% bertanggung jawab mensuplai SA node. Arteri Koroner Kanan Arteri koroner kanan bertanggung jawab mensuplai darah ke atrium kanan, ventrikel kanan,permukaan bawah dan belakang ventrikel kiri, 90% mensuplai AV Node,dan 55% mensuplai SA Node. Siklus Jantung Sebelum mempelajari siklus jantung secara detail, terlebih dahulu saya ingin menyegarkan ingatan anda tentang sirkulasi jantung. Saya yakin kalau anda masih mengingatnya dengan baik atau anda telah lupa? Anda masih ingat kalau jantung dibagi menjadi 4 ruang? Empat ruang jantung ini tidak bisa terpisahkan antara satu dengan yang lainnya karena ke empat ruangan ini membentuk hubungan tertutup atau bejana berhubungan yang satu sama lain berhubungan sirkulasi sistemik, sirkulasi pulmonal dan jantung sendiri. Di mana jantung yang berfungsi memompakan darah ke seluruh tubuh melalui cabang-cabangnya untuk keperluan metabolisme demi kelangsungan hidup. Karena jantung merupakan suatu bejana berhubungan, anda boleh memulai sirkulasi jantung dari mana saja. Saya akan mulai dari atrium/serambi kanan. Atrium kanan menerima kotor atau vena atau darah yang miskin oksigen dari Superior Vena Kava Inferior Vena Kava Sinus Coronarius Dari atrium kanan, darah akan dipompakan ke ventrikel kanan melewati katup trikuspid. Dari ventrikel kanan, darah dipompakan ke paru-paru untuk mendapatkan oksigen melewati Katup pulmonal Pulmonal Trunk Empat 4 arteri pulmonalis, 2 ke paru-paru kanan dan 2 ke paru-paru kiri Darah yang kaya akan oksigen dari paru-paru akan di alirkan kembali ke jantung melalui 4 vena pulmonalis 2 dari paru-paru kanan dan 2 dari paru-paru kirimenuju atrium kiri. Dari atrium kiri darah akan dipompakan ke ventrikel kiri melewati katup biskupid atau katup mitral. Dari ventrikel kiri darah akan di pompakan ke seluruh tubuh termasuk jantung melalui sinus valsava sendiri melewati katup aorta. Dari seluruh tubuh,darah balik lagi ke jantung melewati vena kava superior,vena kava inferior dan sinus koronarius menuju atrium kanan. Secara umum, siklus jantung dibagi menjadi 2 bagian besar, yaitu Sistole atau kontraksi jantung Diastole atau relaksasi atau ekspansi jantung Secara spesific, siklus jantung dibagi menjadi 5 fase yaitu Fase Ventrikel Filling Fase Atrial Contraction Fase Isovolumetric Contraction Fase Ejection Fase Isovolumetric Relaxation Perlu anda ingat bahwa siklus jantung berjalan secara bersamaan antara jantung kanan dan jantung kiri, dimana satu siklus jantung = 1 denyut jantung = 1 beat EKG P,q,R,s,T hanya membutuhkan waktu kurang dari detik. Fase Ventrikel Filling Sesaat setelah kedua atrium menerima darah dari masing-masing cabangnya, dengan demikian akan menyebabkan tekanan di kedua atrium naik melebihi tekanan di kedua ventrikel. Keadaan ini akan menyebabkan terbukanya katup atrioventrikular, sehingga darah secara pasif mengalir ke kedua ventrikel secara cepat karena pada saat ini kedua ventrikel dalam keadaan relaksasi/diastolic sampai dengan aliran darah pelan seiring dengan bertambahnya tekanan di kedua ventrikel. Proses ini dinamakan dengan pengisian ventrikel atau ventrikel filling. Perlu anda ketahui bahwa 60% sampai 90 % total volume darah di kedua ventrikel berasal dari pengisian ventrikel secara pasif. Dan 10% sampai 40% berasal dari kontraksi kedua atrium. Fase Atrial Contraction Seiring dengan aktifitas listrik jantung yang menyebabkan kontraksi kedua atrium, dimana setelah terjadi pengisian ventrikel secara pasif, disusul pengisian ventrikel secara aktif yaitu dengan adanya kontraksi atrium yang memompakan darah ke ventrikel atau yang kita kenal dengan “atrial kick”. Dalam grafik EKG akan terekam gelombang P. Proses pengisian ventrikel secara keseluruhan tidak mengeluarkan suara, kecuali terjadi patologi pada jantung yaitu bunyi jantung 3 atau cardiac murmur. Fase Isovolumetric Contraction Pada fase ini, tekanan di kedua ventrikel berada pada puncak tertinggi tekanan yang melebihi tekanan di kedua atrium dan sirkulasi sistemik maupun sirkulasi pulmonal. Bersamaan dengan kejadian ini, terjadi aktivitas listrik jantung di ventrikel yang terekam pada EKG yaitu komplek QRS atau depolarisasi ventrikel. Keadaan kedua ventrikel ini akan menyebabkan darah mengalir balik ke atrium yang menyebabkan penutupan katup atrioventrikuler untuk mencegah aliran balik darah tersebut. Penutupan katup atrioventrikuler akan mengeluarkan bunyi jantung satu S1 atau sistolic. Periode waktu antara penutupan katup AV sampai sebelum pembukaan katup semilunar dimana volume darah di kedua ventrikel tidak berubah dan semua katup dalam keadaan tertutup, proses ini dinamakan dengan fase isovolumetrik contraction. Fase Ejection Seiring dengan besarnya tekanan di ventrikel dan proses depolarisasi ventrikel akan menyebabkan kontraksi kedua ventrikel membuka katup semilunar dan memompa darah dengan cepat melalui cabangnya masing-masing. Pembukaan katup semilunar tidak mengeluarkan bunyi. Bersamaan dengan kontraksi ventrikel, kedua atrium akan di isi oleh masing-masing cabangnya. Fase Isovolumetric Relaxation Setelah kedua ventrikel memompakan darah, maka tekanan di kedua ventrikel menurun atau relaksasi sementara tekanan di sirkulasi sistemik dan sirkulasi pulmonal meningkat. Keadaan ini akan menyebabkan aliran darah balik ke kedua ventrikel, untuk itu katup semilunar akan menutup untuk mencegah aliran darah balik ke ventrikel. Penutupan katup semilunar akan mengeluarkan bunyi jantung dua S2atau diastolic. Proses relaksasi ventrikel akan terekam dalam EKG dengan gelombang T, pada saat ini juga aliran darah ke arteri koroner terjadi. Aliran balik dari sirkulasi sistemik dan pulmonal ke ventrikel juga di tandai dengan adanya “dicrotic notch”. Total volume darah yang terisi setelah fase pengisian ventrikel secara pasip maupun aktif fase ventrikel filling dan fase atrial contraction disebut dengan End Diastolic Volume EDV Total EDV di ventrikel kiri LVEDV sekitar 120ml. Total sisa volume darah di ventrikel kiri setelah kontraksi/sistolic disebut End SystolicVolume ESV sekitar 50 ml. Perbedaan volume darah di ventrikel kiri antara EDV dengan ESV adalah 70 ml atau yang dikenal dengan stroke volume. EDV-ESV= Stroke volume 120-50= 70 Sumber Pranala link analogi n 1 persamaan atau persesuaian antara dua benda atau hal yang berlainan; kias 2 Ling kesepadanan antara bentuk bahasa yang menjadi dasar terjadinya bentuk lain; 3 Mik sesuatu yang sama dalam bentuk, susunan, atau fungsi, tetapi berlainan asal-usulnya sehingga tidak ada hubungan kekerabatan; 4 Sas kesamaan sebagian ciri antara dua benda atau hal yang dapat dipakai untuk dasar perbandingan;menganalogikan v membuat sesuatu yang baru berdasarkan contoh yang sudah ada; mereka-reka bentuk kata baru dengan mencontoh bentuk yang telah ada ✔ Tentang KBBI daring ini Aplikasi Kamus Besar Bahasa Indonesia KBBI ini merupakan KBBI Daring Dalam Jaringan / Online tidak resmi yang dibuat untuk memudahkan pencarian, penggunaan dan pembacaan arti kata lema/sub lema. Berbeda dengan beberapa situs web laman/website sejenis, kami berusaha memberikan berbagai fitur lebih, seperti kecepatan akses, tampilan dengan berbagai warna pembeda untuk jenis kata, tampilan yang pas untuk segala perambah web baik komputer desktop, laptop maupun telepon pintar dan sebagainya. Fitur-fitur selengkapnya bisa dibaca dibagian Fitur KBBI Daring. Database utama KBBI Daring ini masih mengacu pada KBBI Daring Edisi III, sehingga isi kata dan arti tersebut merupakan Hak Cipta Badan Pengembangan dan Pembinaan Bahasa, Kemdikbud dahulu Pusat Bahasa. Diluar data utama, kami berusaha menambah kata-kata baru yang akan diberi keterangan tambahan dibagian akhir arti atau definisi dengan "Definisi Eksternal". Semoga semakin menambah khazanah referensi pendidikan di Indonesia dan bisa memberikan manfaat yang luas. Aplikasi ini lebih bersifat sebagai arsip saja, agar pranala/tautan link yang mengarah ke situs ini tetap tersedia. Untuk mencari kata dari KBBI edisi V terbaru, silakan merujuk ke website resmi di ✔ Fitur KBBI Daring Pencarian satu kata atau banyak kata sekaligus Tampilan yang sederhana dan ringan untuk kemudahan penggunaan Proses pengambilan data yang sangat cepat, pengguna tidak perlu memuat ulang reload/refresh jendela atau laman web website untuk mencari kata berikutnya Arti kata ditampilkan dengan warna yang memudahkan mencari lema maupun sub lema. Berikut beberapa penjelasannya Jenis kata atau keterangan istilah semisal n nomina, v verba dengan warna merah muda pink dengan garis bawah titik-titik. Arahkan mouse untuk melihat keterangannya belum semua ada keterangannya Arti ke-1, 2, 3 dan seterusnya ditandai dengan huruf tebal dengan latar lingkaran Contoh penggunaan lema/sub-lema ditandai dengan warna biru Contoh dalam peribahasa ditandai dengan warna oranye Ketika diklik hasil dari daftar kata "Memuat", hasil yang sesuai dengan kata pencarian akan ditandai dengan latar warna kuning Menampilkan hasil baik yang ada di dalam kata dasar maupun turunan, dan arti atau definisi akan ditampilkan tanpa harus mengunduh ulang data dari server Pranala Pretty Permalink/Link yang indah dan mudah diingat untuk definisi kata, misalnya Kata 'rumah' akan mempunyai pranala link di Kata 'pintar' akan mempunyai pranala link di Kata 'komputer' akan mempunyai pranala link di dan seterusnya Sehingga diharapkan pranala link tersebut dapat digunakan sebagai referensi dalam penulisan, baik di dalam jaringan maupun di luar jaringan. Aplikasi dikembangkan dengan konsep Responsive Design, artinya tampilan situs web website KBBI ini akan cocok di berbagai media, misalnya smartphone Tablet pc, iPad, iPhone, Tab, termasuk komputer dan netbook/laptop. Tampilan web akan menyesuaikan dengan ukuran layar yang digunakan. Tambahan kata-kata baru diluar KBBI edisi III Penulisan singkatan di bagian definisi seperti misalnya yg, dng, dl, tt, dp, dr dan lainnya ditulis lengkap, tidak seperti yang terdapat di KBBI PusatBahasa. ✔ Informasi Tambahan Tidak semua hasil pencarian, terutama jika kata yang dicari terdiri dari 2 atau 3 huruf, akan ditampilkan semua. Jika hasil pencarian dari daftar kata "Memuat" sangat banyak, maka hasil yang dapat langsung di klik akan dibatasi jumlahnya. Selain itu, untuk pencarian banyak kata sekaligus, sistem hanya akan mencari kata yang terdiri dari 4 huruf atau lebih. Misalnya yang dicari adalah "air, minyak, larut", maka hasil pencarian yang akan ditampilkan adalah minyak dan larut saja. Untuk pencarian banyak kata sekaligus, bisa dilakukan dengan memisahkan masing-masing kata dengan tanda koma, misalnya ajar,program,komputer untuk mencari kata ajar, program dan komputer. Jika ditemukan, hasil utama akan ditampilkan dalam kolom "kata dasar" dan hasil yang berupa kata turunan akan ditampilkan dalam kolom "Memuat". Pencarian banyak kata ini hanya akan mencari kata dengan minimal panjang 4 huruf, jika kata yang panjangnya 2 atau 3 huruf maka kata tersebut akan diabaikan. Edisi online/daring ini merupakan alternatif versi KBBI Offline yang sudah dibuat sebelumnya dengan kosakata yang lebih banyak. Bagi yang ingin mendapatkan KBBI Offline tidak memerlukan koneksi internet, silakan mengunjungi halaman web ini KBBI Offline. Jika ada masukan, saran dan perbaikan terhadap kbbi daring ini, silakan mengirimkan ke alamat email gmail com Kami sebagai pengelola website berusaha untuk terus menyaring iklan yang tampil agar tetap menampilkan iklan yang pantas. Tetapi jika anda melihat iklan yang tidak sesuai atau tidak pantas di website ini silakan klik Laporkan Iklan Bejana berhubungan adalah beberapa bejana yang bagian bawahnya dihubungkan satu sama lain dan bagian atasnya dibiarkan terbuka. Contoh dalam kehidupan sehari-hari; ceret, teko, alat penyiram bunga, dll. Apa kabar adik-adik? Semoga kalian selalu dalam keadaan sehat. Materi fisika kita kali ini akan membahas tentang salah satu topik yang berkaitan tentang tekanan zat cair, yakni bejana berhubungan. Sebelumnya, kita telah menuntaskan sub pembahasan lainnya, yakni tentang Hukum Pascal dan Tekanan Hidrostatis. Sebenarnya, ketiga materi ini saling berhubungan, jadi ada baiknya kalian menguasai ketiganya agar mendapatkan pemahaman yang baik tentang tekanan pada zat cair. Lantas, seperti apa sih hakikat bejana berhubungan itu? Bagaimana bunyi hukumnya? Nah, semuanya akan dijelaskan secara lengkap dalam materi ini, termasuk rumus dan contoh soalnya. Baiklah, kita mulai saja pembahasannya... Daftar Isi 1Pengertian Bejana Berhubungan 2Bunyi Hukum Bejana Berhubungan 3Rumus Bejana Berhubungan 4Contoh Bejana Berhubungan dalam Kehidupan Sehari-hari Teko DAM Penampung Air Bangunan 5Contoh Soal Bejana Berhubungan 6Kesimpulan Pengertian Bejana Berhubungan Apa yang dimaksud dengan bejana berhubungan? Dalam ilmu fisika, bejana berhubungan adalah dua atau lebih bejana yang bagian bawahnya saling dihubungkan satu sama lain dan bagian atasnya dibiarkan terbuka. Untuk lebih jelasnya, perhatikan gambar dibawah ini! Sebagaimana yang kalian lihat pada gambar di atas, dua atau lebih pipa saling dihubungkan. Ketika bejana tersebut diisi zat cair, maka permukaan zat cair pada pipa-pipanya akan sama tinggi. Mengapa hal itu bisa terjadi? Penyebabnya adalah Hukum Pascal. Mari kita analisis Zat cair dalam tabung kiri akan memberi tekanan pada dasar tabung. Menurut Hukum Pascal, tekanan ini akan diteruskan ke segala arah dan sama rata, termasuk ke zat cair di tabung yang sama juga diberikan oleh zat cair pada tabung kanan ke tabung kiri. Akhirnya, keseimbangan akan tercapai jika kedua tekanan itu cairan di dalam kedua tabung sama, maka keseimbangan akan tercapai jika tinggi cairan di kedua tabung sama. Bunyi Hukum Bejana Berhubungan Hukum Bejana Berhubungan berbunyi "Jika bejana berhubungan diisi dengan zat yang sama dan dalam keadaan seimbang atau diam, maka permukaan zat cair terletak pada satu bidang datar." Jadi, syarat berlakunya hukum bejana berhubungan adalahZat cair dalam bejana samaZat dalam keadaan setimbang atau diam Permukaan zat cair tidak dipengaruhi oleh bentuk bejana atau pipa. Bagaimana pun bentuk bejana atau pipanya, permukaan zat cair akan selalu itu, permukaan zat cair juga tidak dipengaruhi oleh posisi bejana. Meskipun, posisi bejana dimiringkan, permukaan zat cair akan tetap datar. Hukum di atas sekaligus menjadi sifat dari bejana berhubungan. Namun, sifat atau hukum bejana berhubungan tidak berlaku jika berada pada kondisi berikut ini Bejana berhubungan berisi lebih dari satu macam zat cair yang tidak dapat bercampur, zat cair yang massa jenisnya lebih kecil maka permukaannya lebih tinggi. Salah satu mulut bejana berhubungan ditutup sehingga tekanan di permukaan zat cair tidak sama, permukaan zat cair dalam bejana yang mulutnya ditutup lebih tinggi dibandingkan dengan permukaan zat cair pada mulut bejana yang tidak tertutup. Jika dalam bejana berhubungan terdapat pipa kapiler. Jika zat cair dalam bejana berhubungan digoncang-goncangkan atau zat cairnya bergerak. Rumus Bejana Berhubungan Misalnya, suatu bejana berhubungan diisi dua zat cair yang berbeda dan tidak dapat bercampur dengan berat jenis masing-masing S1 dan garis pada batas permukaan kedua zat cair itu garis AB, seperti yang tampak pada gambar di bawah ini!Berdasarkan hukum tekanan hidrostatis, tekanan di A sama dengan tekanan di B. pA = pB...1 Oleh karena p = h . S, maka persamaan 1 bisa dituliskan menjadi h1 . S1 = h2 . S2...2 Oleh karena S = ρ . g, maka persamaan 2 bisa tuliskan menjadih1 . ρ1 . g = h2 . ρ2 . gh1 . ρ1 = h2 . ρ2, atauh1/h2 = ρ1/ρ2 ....3Keterangan h1 = tinggi zat cair 1 m atau cmh2 = tinggi zat cair 2 m atau cmρ1 = massa jenis zat cair 1 kg/m3 atau g/cm3ρ2 = massa jenis zat cair 2 kg/m3 atau g/cm3Contoh Bejana Berhubungan dalam Kehidupan Sehari-hariDisadari atau tidak, ada banyak contoh bejana berhubungan dalam kehidupan sehari-hari yang memanfaatkan sifat permukaan zat cair yang selalu mendatar. Berikut ini beberapa di antaranya 1. Pembuatan TekoPancuran teko tidak boleh lebih rendah daripada posisi tutupnya. Sebab, jika lebih rendah maka kita tidak akan pernah bisa mengisi teko dengan air hingga penuh. Air akan keluar melalui pancuran sebelum teko terisi penuh dengan air. Hal ini disebabkan tinggi permukaan air di dalam teko dengan tinggi permukaan air di dalam pancurannya selalu sama. Air akan keluar setiap kali mencapai mulut Pembuatan DAMDAM yang dibuat untuk mengairi sawah harus menampung air dengan permukaan yang lebih tinggi dari persawahan. Karena permukaan air cenderung mengambil posisi mendatar, air dari dam dapat mengalir ke daerah persawahan yang lebih Menara Penampung AirMenara penampung air dibuat tinggi agar air dapat mengalir ke pipa-pipa yang lebih rendah di dalam rumah. Karena permukaan air cenderung rata, air akan mengalir pada saat keran di dalam rumah Tukang BangunanTukang bangunan menggunakan konsep bejana berhubungan untuk membuat titik yang sama tingginya. Kedua titik yang sama ketinggiannya ini digunakan untuk membuat garis lurus yang datar. Biasanya, garis tersebut digunakan sebagai patokan untuk memasang ubin supaya permukaan ubin menjadi rata dan memasang jendela-jendela supaya antara jendela satu dan jendela lainnya bangunan menggunakan selang kecil yang diisi air dan kedua ujungnya diarahkan ke atas. Akan dihasilkan dua permukaan air, yaitu permukaan air kedua ujung Soal Bejana BerhubunganBerikut ini adalah beberapa contoh soal tentang bejana berhubunganContoh Soal 1Sebuah bejana diisi air. Kemudian, dituangkan minyak di kaki lainnya hingga tinggi minyak 20 cm terhadap garis setimbang. Berapa tinggi air terhadap garis setimbang jika massa jenis air 1 g/cm3 dan massa jenis minyak 0,8 g/cm3. JawabanDiketahuih2 = 20 cmρ1 = 1 g/cm3ρ2 = 0,8 g/cm3Ditanyakanh1 .....?Penyelesaianh1 = h2 ρ2/ρ1 = 20 . 0,8/1 = 20 . 0,8 = 16 cm Jadi, tinggi air terhadap garis setimbang adalah 16 cm. Contoh Soal 2Sebuah bejana berhubungan mempunyai luas penampang yang sama di semua bagiannya. Di pipa kiri ada air setinggi 16 cm, sedangkan di pipa kanan ada alkohol dengan tinggi 20 cm. Jika massa jenis air 1 g/cm3, berapa massa jenis alkohol?JawabanDiketahuih1 = 16 cmh2 = 20 cmρ1 = 1 g/cm3Ditanyakanρ2 .....?Penyelesaianρ2 = ρ1 h1/h2 = 1 . 16/20 = 1 . 0,8 = 0,8 g/cm3 Jadi, massa jenis alkohol adalah 0,8 g/cm3. KesimpulanJadi, bejana berhubungan adalah beberapa bejana yang bagian bawahnya dihubungkan satu sama lain dan bagian atasnya dibiarkan terbuka. Contoh dalam kehidupan sehari-hari; ceret, teko, alat penyiram bunga, adik-adik, udah paham kan materi bejana berhubungan di atas? Jangan lupa lagi dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga Yohanes. 2008. IPA Fisika Gasing 2 Kelas VIII. Jakarta Agung. 2008. IPA Terpadu VIIIB Untuk SMP dan MTs Kelas VIII. Jakarta Grasindo. Artikel Fisika kelas VIII ini menjelaskan tentang tekanan hidrosatis, mulai dari penjelasan konsep, rumus, dan hubungannya dengan bejana berhubungan — Siapa yang suka berenang? Kalau katanya Demitri Martin, komedian asal Amerika, berenang itu kegiatan paling aneh. Kita sulit membedakan berenang sebagai kegiatan olahraga, atau upaya penyelamatan diri biar nggak tenggelem. Masalahnya, menyelam tidak hanya membuat kita merasa panik karena… HEY, AIR ITU BUKAN HABITAT ASLI MANUSIA GITU LHO! Selain itu, semakin dalam kita menyelam, kepala kita terasa sakit. Kayak berat dan terasa pengang gitu, deh. Coba deh perhatikan lagi gambar paling atas artikel ini. Secara fisika, kita bisa membuktikan kalau penyelam yang bawah akan lebih sulit “berenang” dianding penyelam yang dekat dengan permukaan. Kenapa? Karena ia terkena tekanan hidrostatis yang lebih besar dibandingkan yang atas. Apa sih tekanan hidrostatis itu? Secara definisi, tekanan hidrostatis adalah tekanan yang diakibatkan oleh gaya yang ada pada zat cair terhadap suatu luas bidang tekan, pada kedalaman tertentu. Kasarnya, setiap jenis zat cair, akan memberikan tekanan tertentu, tergantung dari kedalamannya. Ya, jadi konsep ini lah yang ngebuat si penyelam yang berada di bawah, kepalanya akan “lebih sakit” daripada yang hanya di sekitar permukaan saja. Karena, dia mendapatkan tekanan dari zat cair dalam hal ini laut. Contoh lain ketika kamu lari di kolam renang, pasti akan terasa lebih “berat” dibandingkan di jogging track kan? Ya karena tubuh kamu mendapat tekanan dari air di kolam renang. Baca juga Asal-Usul, Sejarah, dan Penerapan Hukum Pascal di Kehidupan Sehari-hari Sekarang, kita coba buktikan konsep ini dengan contoh yang lain ya. Coba kamu pikir dulu, kira-kira, mana keran air yang ketika dibuka akan mengucur paling jauh? Jangan tap gambarnya dulu ya buat liat bocorannya. Coba, dipikir dulu. Kalau pun udah jawab, cari tahu kenapa? Betul. Seperti halnya penyelam tadi, tekanan hidrostatis yang paling besar terdapat di keran paling bawah keran C. Jelas aja, perbandingan jaraknya aja 3 kali lipat dari keran A. Maka, karena jenis airnya sama, tekanan hidrostatisnya akan 3 kali lipat lebih besar dibanding yang keran A. Ingat ya, untuk mengecek tekanan hidrostatis, bagian jarak h diukur dari permukaan zat cair. Bukan dari bagian dasar. Kalau kita hitung, maka tekanan hidrostatis di keran C menjadi seperti berikut. Diketahui Jawab Bandingkan dengan keran A Atau dengan keran B Hasilnya, ketika keran C dibuka, dia akan mendapat tekanan yang lebih besar dari air yang ada di dalam bak. Maka dari itu, kucurannya akan lebih jauh. Konsep penjelasan tekanan hidrostatis cukup ada di tekanannya aja ya. Kalau kamu ingin tahu berapa lama waktu yang dibutuhkan sampai air di bak habis, atau berapa kecepatan kucuran air itu, ada konsep lain yang harus dipelajarin. Namanya hukum Bernoulli. Pokoknya, tekanan hidrostatis ini hanya sebatas seberapa besar tekanan yang diberikan zat cair di kedalaman tertentu. Eits, kamu pikir konsep tekanan hidrostatis ini nggak penting karena cuma menghubungkan massa jenis, gravitasi, dan kedalaman aja? Jawaban kamu salah besar! Ada berbagai manfaat yang bisa kita temukan di kehidupan sehari-hari dari ditemukannya konsep tekanan hidrostatis ini! Ngomongin fluida dan tekanan tidak akan bisa lepas dari bejana berhubungan. Sebenarnya, konsep bejana berhubungan ini simpel banget. Kayak sifat air pada umumnya aja, di mana air akan berubah bentuk mengikuti wadahnya. Ketika kita punya wadah berupa bejana yang saling berhubungan, tinggi permukaan airnya akan merata di seluruh bagian bejana tersebut. Gampang, kan? Masalahnya, bagaimana kalau jenis air yang kita tuang berbeda-beda? Di salah satu pipa U, misalnya, kita isi dengan minyak, sementara di pipa satu lagi kita tuang air? Apakah hasilnya tetap sama? Jawabannya, tentu saja tidak. Karena massa jenis-nya berbeda materi tentang massa jenis ini pernah dibahas di hukum archimedes. Kalo pengen tahu, klik di sini ya, artinya salah satu dari kedua zat cair tersebut ada yang lebih “enteng”, sehingga bisa berada di atas yang lainnya dan tidak tercampur. Namun, hal yang menarik adalah tekanan mereka sama. Tekanan ini lah yang dapat kita cari menggunakan konsep tekanan hidrostatis tadi. Kita hanya tinggal menyamakannya berdasarkan tinggi dan massa jenis kedua zat cairnya aja. Untuk konsep ini, yang kamu perlu perhitungkan adalah jarak h. Kamu harus mengukurnya dari permukaan, ke batas bawah dari perbatasan kedua zat cair yang berbeda itu. Jangan sampai salah yaa. Kira-kira segini dulu penjelasan tentang tekanan hidrostatis dan bejana berhubungannya ya. Intinya sih tekanan hidrostatis itu tergantung dari kedalaman di zat cairnya. Kalau kamu pengin mempelajari materi ini dalam bentuk video, langsung aja cus ke ruangbelajar! Hukum Utama Hidrostatis menyatakan bahwa semua titik yang berada pada bidang datar yang sama dalam fluida homogen, memiliki tekanan total yang sama. Walaupun bentuk penampang tabung berbeda, besarnya tekanan total di titik A dan B adalah sama. Persamaan Hukum Utama Hidrostatis dapat diturunkan dengan memperhatikan gambar di bawah ini. Misalkan, pada suatu pipa U dimasukkan dua jenis fluida yang massa jenisnya berbeda, yaitu ρ1 dan ρ2Bejana berhubungan Jika diukur dari bidang batas terendah antara fluida 1 dan fluida 2, yaitu titik B dan titik A, fluida 2 memiliki ketinggian h2 dan fluida 1 memiliki ketinggian h1. Tekanan total di titik A dan titik B sama besar. Menurut persamaan tekanan hidrostatis, besarnya tekanan di titik A dan titik B bergantung pada massa jenis fluida dan ketinggian fluida di dalam tabung. Secara matematis, persamaannya dapat dituliskan sebagai berikut. pA = pB po + ρ 1gh1 = po + ρ 2gh2 = dengan h1 = jarak titik A terhadap permukaan fluida 1, h2 = jarak titik B terhadap permukaan fluida 2, ρ1 = massa jenis fluida satu, dan ρ2 = massa jenis fluida dua. Contoh Soal 1 Dua buah zat cair dimasukkan ke dalam pipa U sehingga tingginya 12 cm dan 20 cm. Jika massa jenis zat cair yang kedua adalah 0,12 g/cm3, maka berapakah massa jenis zat cair yang satunya lagi? Penyelesaian h1 = 12 cm h2 = 20 cm ρ2 = 0,12 g/cm3 Untuk mencari massa jenis zat yang lainnya gunakan rumus yakni = ρ1.12 = 0,1220 ρ1 = 2,4/12 ρ1 = 0,2 g/cm3 Jadi, massa jenis zat cair yang satunya lagi adalah 0,2 g/cm3. Contoh Soal 2 Pada sebuah pipa U mula-mula dimasukkan air, kemudian pada kaki kiri pipa U dimasukkan lagi suatu zat cair setinggi 20 cm yang menyebabkan tinggi permukaan air pada kaki kanan pipa U lebih tinggi 16 cm terhadap permukaan air yang ada pada kaki kiri pipa U. Jika massa jenis air = 1 gr/cm3, maka berapakah massa jenis zat cair tersebut? Penyelesaian h1 = 20 cm h2 = 16 cm ρ2 = 1 gr/cm3 Untuk mencari massa jenis zat yang lainnya gunakan rumus yakni = ρ1.20 = 116 ρ1 = 16/20 ρ1 = 0,8 g/cm3 Jadi, massa jenis zat cair tersebut adalah 0,8 g/cm3. Contoh Soal 3 Sebuah pipa U diisi air dan minyak. Jika tinggi minyak 20 cm dan tinggi air 18 cm, maka berapakah massa jenis minyak yang digunakan? Penyelesaian hm = 20 cm hair = 18 cm ρair = 1 gr/cm3 Untuk mencari massa jenis zat yang lainnya gunakan rumus yakni = ρm.20 = 118 ρ1 = 18/20 ρ1 = 0,9 g/cm3 Jadi, massa jenis minyak tersebut adalah 0,9 g/cm3. Demikian artikel tentang hukum utama hidrostatis lengkap dengan ilustrasi gambar dan contoh soal serta penyelesaiannya.

dua bejana berhubungan satu dengan yang lain